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LIQUID CRYSTALS, 1993, VOL. 14, No. 5, 1269-1282 

Calculation of chevron profiles 
in ferroelectric liquid crystal cells 

by ARNOUT DE MEYERE*?, HERMAN PAUWELS and ERWIN DE LEY$ 
Laboratory of Electronics, University of Gent, 

Sint-Pietersnieuwstraat 41, B-9000 Gent, Belgium 

The energetic aspects of layer deformation in ferroelectric liquid crystal cells are 
discussed and the actual chevron shape is calculated in some situations. We 
emphasize two, in our view, essential energy contributions. One term considers the 
layer curvature. The other one refers to the variations in the distance between layers 
and the consequent changes of the smectic cone angle. In some simple cases we can 
determine optimal shapes of the chevron layer structure by analytical solutions, 
based on these two energy terms. In more complicated situations other contri- 
butions have to be considered and the chevron profiles are simulated numerically. 
The influence of the applied voltage and the choice of parameter values are studied. 

1. Introduction 
Since the invention of surface-stabilized ferroelectric liquid crystals [ 11, the chiral 

smectic C layer structure in these displays has been a hot topic of research and 
discussion. After high resolution X-ray and optical response measurements, the first 
model with bookshelf geometry was modified to describe inclined and bent layers 
C2-41. Important adjustments of the theory came with the introduction of the chevron 
structure [5-71. Geometrical consequences (such as zig-zag defects) and the influence of 
alignment layers and temperature were studied in further detail (see, for example [8,9]). 
Research has continued and more exotic variations of the chevron layers have been 
published recently [ 10,111. Meanwhile, theoretical energy specialists such as Dahl 
[ 12,131 and Nalcagawa [ 14,153 have refined the energy expressions, useful for 
numerical modelling. 

The aim of this paper is mainly to present analytical and numerical ways for the 
study of the optimal shape of one-dimensional chevrons. Should the chevron interface 
be considered as discontinuous or smooth? Also the influence of an applied electric 
field on the layer profile is a topic of discussion. How and to what extent are the layers 
bent by the torque that exists on each molecule through its polarization vector? 
Extensive layer bending has been suggested in the literature (see, for example [16]). 
However, few attempts have been made to develop energetical verification of the layer 
bending model. MacGregor [17] has made an important numerical analysis, based on 
the energy expressions of Dahl. But he neglected one energy term which seems very 
important to us: the energy cost of the layer bending and its implications on the layer 
thickness and the smectic cone angle. We will also discuss more recent work by Willis et 
al. [l8] on the layer response to low electric fields. In any case, it may be clear that 
chevron shapes are crucial for grey-scale techniques [ 191. Variations of the chevron 
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1270 A. De Meyere et al. 

layer structure are in fact deviations of the positional ordering in layers. The classical 
Oseen-Frank energy expressions only refer to orientational ordering of the molecules. 
In 62 we consider two, in our view, essential new energy terms: one expresses the 
curvature of the layers, and the other takes account of variations in distance between 
layers and thus changes in the cone angle. We also make an attempt to derive the 
proposed energy terms from the general expressions, that are developed by Dahl 
[12,13,20]. In 3, we limit ourselves to a simple case where exact analytical solutions 
can be found. Variations of the layer structure depend only on the coordinate which is 
perpendicular to the glass surfaces. We search for the two stable states where the 
molecules are parallel to the glass surfaces. In $4, we consider the same one- 
dimensional situation as in § 3, but now the influence of a voltage over the display is 
taken into account. Analytical solutions are no longer possible. The computer program 
is rather complicated, and its principles are explained. Some results are discussed. In $ 5, 
we try to generalize some of our results to variations in two dimensions. When an 
electric field tends to orient the polarization as perpendicular as possible to the glass 
surface, bending occurs in the direction perpendicular to the rubbing direction. Such 
structures were proposed in the literature [lo, 111. We show that these structures are in 
agreement with the energy terms under consideration. They are the only structures that 
minimize cone angle variations. Exact analytical solutions are no longer possible, and 
adaptations of the computer program to two-dimensional cases are not performed yet. 

2. Energy expressions 
In figure 1, one can see the coordinate systems that we used. The xyz system is the 

reference frame with the x axis perpendicular to the glass plates, and the z axis parallel 
to the rubbing direction. The cpk system is used for calculating elastic energies 
according to the expressions of Dahl[13,20]. The k axis is the smectic cone axis. Note 
that we do not allow arbitrary orientation of the cone: k always lies in the xz plane. 
Further rotation of cpk delivers the classical 123 or qpn axes connected with the liquid 

JY 2 
Figure 1. The coordinate systems used to describe the FLC structure. Both the cpk and the qpn 

systems occur in the energy calculations. 
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Calculation of chevron projiles 1271 

crystal molecule. The coordinates of n are used in the normal Oseen-Frank 
expressions. Three angles (cp, 6 and 6) govern the structure. Without giving any details, 
we can calculate the following energy contributions, in case the angles only vary along 
the x direction (one dimensional approach). 

2.1. Volume energy 
Three contributions to the volume energy have to be considered: the elastic part, the 

cone angle deviation energy and the electric term. 

2.1.1. The elastic energy 
(a) A first option is to use a modified form of the Oseen-Frank elastic energy. The 

classical Oseen-Frank expression only considers the orientational ordering of the 
molecules. In order to take the smectic structure into account we propose to introduce 
an additional term. Indeed, the layer bending causes the molecules to be displaced from 
their favourite position. In our one-dimensional approach, the layer bending can be 
described by the first derivative of the angle 6. We suggest the energy term ,462. The 
index x indicates derivation towards the x-coordinate. 

If we consider equal elastic constants (K , = K ,  = K ,  = K )  and q l l  = q1 = 0, we obtain 

felas = A6; +$K((V - n)' + (V x n)') 

= A6: + iK(sin2 6)cp; + (1 - sin2 6 cos2 p)6: + 0; 
- 2 sin 6 cos 6 cos cpcpx6, - 2 sin (~6~6,.  (1) 

(b) A second possibility is to start from the expressions according to Dahl- 

(2) 
Lagerwall [13,20], 

. G a s  =f, + f c  +Ls +A +f8' 
Here the smectic layer bending has already been taken into account. In our coordinate 
system, we calculated the following expressions for the basic terms in Dahl's energy 
equations (see [13]). 

t ,  , = -sin cp cos 'p cos 66,, 

t,, = 
t , ,  = - sin2 'p cos 66,, 
t,, = 
t 3 , = - sin cp sin 66,, 
t ,  , = -sin cp cos dcp,, 

t , ,=  sin6cpX. 

t ,  , = - cos2 cp cos 66, 
cos 'p sin 66,, 

sin cp cos cp cos 66,, 

~ , ~ = - c o s ~ c o s ~ ~ , ,  

Now we combine these terms according to [13]. We neglect the so-called gauge terms 
Cr, = 0), and after strong reduction of parameters 

- 
( A 1 , = 4 d ,  A , , = A , , = A 3 1 = A 3 2 = 2 d ,  A,=&, A , = 0 ,  B=O 

B ,  = B,  = B,  =B, B , ,  =0, C ,  = C ,  = C ,  =%, C,=O, D ,  = D ,  = D ,  =9) 

we find 

f :,as = d 6 :  + Bcp: + % cos cpcp,6, + 9 (sin 6 - sin cp cos 6)(cp, + cos cp6,) (3) 
(comparable simplifications were made by MacGregor [ 171). 
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1272 A. De Meyere et al. 

Note the difference between A in equation (1) and d in equation (3). In the last 
equation, d is the coefficient of the unique Sp term which takes care of both the layer 
bending and the director distortion. In equation (l), A only refers to the layer bending 
energy. The term By2 in the Dahl-Lagerwall expressions [20] which deals with the 
compression (or distension) of the layers has not been included. It will be replaced by a 
similar term (see equation (5)). 

The first term in equation (3) describes the deformation of the smectic layers, the 
second one handles the energy cost of the molecule turning on the smectic cone and the 
third contribution takes the coupling of these two into account. The last term takes care 
of the chiral energy. For this paper, we have studied the energy form (3) in an even more 
simplified form. We neglect the chiral term (9 = 0) and we assume cp to be close to zero. 
Since important conclusions will be drawn in the case of an applied field, this is not an 
unpermitted assumption. As soon as an electric field is applied, the molecules turn to 
their favourite position on the smectic cone, as can be seen on the simulations in figure 
6. We are aware of the inaccuracy and plan to investigate the full terms later. The 
calculations are simplified by taking for the elastic energy: 

f :las = + B d  + ~(P,& (4) 

2.1.2. The cone angle deviation energy 

expansion 
For the cone angle deviation energy we considered the first term of the Landau 

Lo,, = T sin' (0 - 0,) ( 5 )  

where 8, indicates the equilibrium value for 8. 

2.1.3. The electric energy 
For the electric energy the calculation method simplifies when the dielectric 

displacement D is taken as parameter. The corresponding voltage drop across the 
liquid crystal layer is then obtained from the equilibrium angle distribution. This 
means that we consider the Helmholtz free energy (compare Pauwels et al. [21] or 
Wohler et al. [22]): 

As a summary for the volume energy, we have the choice between two expressions, 
depending on the choice of the elastic energy. 

(a) With Oseen-Frank 

fvo,ume=A6:+aK((V.n)2+(V x n)')+ T ~ i n ~ ( e - e , ) + ~ ~ ~ ~ , , ~ , Z .  (7) 

(8) 

(b) With Dahl-Lagerwall 

f :o,ume = d6,Z + gcp: + %cp,dX + T sin2 (e - e,) + +c0t,,~,2. 

2.2. Surface energy 
With s the outward normal to the glass-plates, n the director and p the unit 

polarization vector, we can write 

fsurf=Yl(n'S)2 -YAP'S). (9) 
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Calculation of chevron profiles 1273 

Equations (8) and (9) are the starting point for a minimization program, described in 
$4. At this point, however, one very important refinement is still necessary; this was 
already mentioned in the first chevron papers (see, for example, [6] and [7]), but is 
sometimes neglected in literature ([ 171). 

Variations of the smectic layer structure, through variations of the angle 6 often 
lead to changes of the layer thickness. This means that the cone angle has to deviate 
from its equilibrium value. The situation is clarified in figure 2. 

The following relations are easily verified: 

(10) 

d ,  = ~ C O S  0 

= d ,  cos 6, 

cos e = cos 6, 

with 

where 1 is the molecular length and d,  the distance between the layers along the z-axis, 
the rubbing direction. This parameter d,  is in fact determined by the way the transition 
from smectic A to smectic C occurred. Notice that the number of molecules between 
two layers is in fact determined by this parameter, since it defines the volume between 
the layers. 

Equation (10) indicates a coupling between 6 and 8. Especially in the one 
dimensional approach which we are dealing with, d ,  has to be constant. Hence, in this 
case each variation of 6 causes variations of 8, which are very hard to establish. 
Therefore, in equation (8) there are only two independent variables, cp and 6. The 
connection between 6 and 8 would lead to even more mathematical complications if 
one proceeds from the Oseen-Frank equations (1). 

At this point, we want to refer to an important recent article by Willis et al. ([18]). 
The authors conclude after X-ray measurements that ‘The chevron rules are satisfied 
globally, but violated locally’. This would mean that rule (10) is not satisfied locally. We 
agree that this can be the major objection to our research. However, since there is no 

Y 1 
Figure 2. In the one dimensional approach, there exists a fixed relation between the cone angle 

B and the layer tilt 6. 
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1274 A. De Meyere et al. 

rigorous explanation at this point (Willis et al. suggest the presence of layering defects, 
maybe edge dislocations), we think that it is useful to investigate the predictions of the 
defect-free theory. In any case, the x dependence of the angle 6 (=layer bending) is more 
accurately dealt with here than in [lS] where an average value for 6 is used. 

3. One dimensional analytical solution 
From figure 1 we can deduce the coordinates of the director n with respect to the 

xyz-frame 

n = I,[ - sin 0 sin cp cos 6 + cos 8 sin S ]  

+ 1,[sin 8 cos cp] 

+ I,[sin 0 sin cp sin 6 + cos 8 cos 61. 

If the director is parallel to the glass surface, its cp-angle is given by 

. tan6 
sin cp =- 

tan 6 

and its angle I) with the z-axis 

cos e 
cos * =- 

cos 6' 

Using our important equation (10) we see that cos $ = v, independent of x. So, in the 
two stable states, all the molecules are parallel to each other (and to the glass surface). 
The Oseen-Frank energy (second term in equation (1)) for these states is thus zero and 
minimal. Unfortunately the polarization is x-dependent for these states 

P,= -Pcoscpcos6. (15) 

In absolute value, this expression will be minimal at the glass surface and maximal 
(= P )  in the middle. Even when there is no voltage over the liquid crystal, there will be 
an x-dependent electric field. Therefore the electrostatic energy, (*) for constant 
D (Helmholtz free energy): &otx,E2, (**) or for constant V (Gibbs free energy): 
-$ED,-EP (see [21]), is not zero. In this section, we shall neglect this effect. The 
optimal form of the layers, under short-circuit, is then determined by minimization of 
the positional energy. So, we can deduce from (7) the simplest form of the energy to be 
minimized, with $K((V - n)' + (V x n)') = 0 

The first term takes account of the deviation of the layers from a planar configuration, 
and the second term considers the deviations of the cone angle from its equilibrium 
value. Since equation (10) describes how 8 varies with x through 6, the second term 
basically can be expressed as a function of 6. So we end up with: 

In figure 3 the dependence of 6 and y on x are schematically represented. 
As shown in the appendix, y is minimal for 

A (:y - =g(6) 
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Calculation of chevron projles 1275 

x t  X 

Figure 3. Dependence of the layer tilt 6 and the cone angle variation energy g on x. 

and this minimal value is given by 

A simple approximation shows more clearly what happens. In the middle of the liquid 
crystal, the cone angle has its minimum value, cos 8, = v. There the cone angle energy 
has its maximum value gm= Tsin2(8,-8,). If we now assume that g jumps to its 
maximum value, as soon as 6 deviates from its equilibrium value, then equation (18) 
shows that d6/dx is constant in this region. 

If this region has a thickness d,  then 

and 

which is minimal for 

and 

Equation (22) describes the thickness of the tip of the chevron layer. We no not know 
the relative values of the constants A and 7: However, most researchers assume on 
experimental grounds that the tip of the chevron layer is very small, so we must accept 
that T is much more important than A.  The transition in 6 from 6, to -6, occurs 
almost discontinuously, such that the energy stored in the 'deviation from a plane' is 
still as important as that stored in the 'cone-angle deviation'. Because the chevron tip is 
so thin, we also dared to neglect the electrostatic free energy at zero voltage. The 
polarization charge and field distribution are schematically represented in figure 4. The 
effect of the double layer disappears when d, goes to zero. 
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1276 A. De Meyere et al. 

/-v=o 

f E  

t px i E  
== - 

Figure 4. Even under short circuit conditions, the orientation of the polarization vector 
changes through the layer. This corresponds with the presence of polarization charge. 

4. Numerical approach 
A common method to handle structural problems like this goes as follows: one 

derives the so-called Euler-Lagrange equations from the energy functional (with 
expressions (8) and (9) as integrand) and looks for the time independent solutions. 
MacGregor (see [17]) uses this method in a successful way, but without considering the 
6-8 coupling. 

Another method, rather straightforward in principle, has been suggested already in 
Karlruhe (see, for example, Wohler et al. [22]). One divides the liquid crystal layer into 
slabs and uses a linear approximation for the two angles (9 and 6 in our case) within 
each slab. In this way, the energy integral can be reduced to a function of the node 
values, which has to be minimized. A modified multi-dimensional Newton-Raphson 
method is used to calculate the angle distributions that minimize the energy. Programs 
have been made with this numerical method, but as far as we know only for the easier 
case of nematic liquid crystals. Also, at our laboratory, such a program is being used 
(see [23]). We adapted the program for the more complicated energy expressions. In 
this article we want to share our first results. 

In figure 5 one can see the influence of the applied voltage on the chevron tip width. 
We had to choose numerical values for the different parameters in expressions (8) 
and (9): d= lOpN, a= 1 pN, %'= 1 pN, T=l00000Pa,  P= -300pCrn-', 
y1 = lOOpNm-' and y2=50pM m-' (for order of magnitude see also MacGregor 
[ 171). As a measure of tip width, we calculated the region in the liquid crystal where 6 
deviates more than 10per cent from its equilibrium value at the border. Indeed, 
bending of the layers occurs after application of the voltage drop. 

The extent of the bending is largely dependent on the magnitude of our constants. If 
we decrease the T constant (for the cone angle deviation or soft mode) by one order of 
magnitude to 10 000 Pa, the influence of the electric field on the layer profile is much 
larger, as illustrated in figure 6. In other words, layer bending is large in the case of small 
compression energy. This is only an illustration of our numerical results. X-ray data 
(see [18]) seem to illustrate that T should be taken as fairly large. In that case, the layers 
bend just very slightly, as indicated in figure 5. Note that both 6 and cp are plotted in 
figure 6: the upper three curves show the variation of 6 in the upper half of the liquid 
crystal layer, for three different values of the voltage. The lower three curves show cp to 
be equal to zero almost everywhere (a small voltage sucks the molecules to their 
favourite position on the cone, see figure 1). 
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2 "  

I 0 

0 10 20 30 40  50 60 70 

voltage drop / V  

Figure 5. The chevron tip width increases with the applied voltage drop. 

1 61" 
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21 -7234 
30.254 6 

- 
- 

40 '- 10 
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21.7233 
13.2097 

Y 

-20 4, 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

x I crm 
Figure 6. For relatively small values of T ,  the layers bend easily, as can be seen from the curves. 

The indicated curve parameter is the corresponding voltage drop. The angle distributions 
are shown in the case T = 10 000 Pa. 
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1278 A. De Meyere et al. 

Finer analysis of experimental data might lead to the realistic values for our 
parameters. But it is our feeling that T could possibly be so large that bending is far less 
obvious than has been assumed up till now in literature. 

5. Two dimensional structures 
In the one dimensional case, it is not possible to influence drastically the form of the 

chevron layer through the electric field. Although in the tip of the chevron layer the 
polarization is more aligned with the electric field, the cone angle is decreased. The 
energetical disadvantage of the last effect causes the tip of the chevron to remain very 
small. In the recent literature ([lo, 1 l]), structures were proposed in which the layers 
have an inclination 6,  with respect to the y-axis instead of the x-axis. An example is 
demonstrated in figure 7. The distance between layers along the z-axis remains 
unchanged, so that the number of molecules between layers is unchanged. Now the 
polarization can become perpendicular to the glass surface, without changing the cone 
angle, so that these states are favoured by the electric field. Some of these structures 
only require displacements of molecules in the bulk of the liquid crystal, which are 
considered to be reversible, but other structures include displacements of molecules at 
the glass surface, which are irreversible, and therefore stable. 

Suppose the shape of the layers is described by a function z(x,y) with partial 
derivatives. 

(24) 
az 
aY 

.=&’ lJ=- I 

Figure 7. In the recent literature ([lo, 111) authors mention two dimensional structures, as 
illustrated in this figure. 
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Calculation of chevron profiles 1279 

describing the inclination along the x-axis and y-axis respectively. The direction 
coefficients of the normal to the surface are (- u, - v, 1) (unnormalized), so that, if the 
distance in the z-direction between layers is d,, the perpendicular distance is 

=lcos0, d,  d -  
‘ - J ( l  + u 2 + v 2 )  

which determines the cone angle. The cone angle energy can therefore be expressed as a 
function of 1 + u2 + v2 

T sin2(0 - 0,) = g( 1 + u2 + u2). (26) 

The energy associated with the curvature of the layers can be described with some 
‘Oseen-Frank-like’ expression of the normal vector (- u, - v,  1). Since the divergence of 
this vector is - au/ax - au/ay and since its curl is zero, this expression is 

A - + -  (;: ;;y , 

and the total ‘positional energy’ can be written as 

W, v,  ux, vy)  dx dy, s 
with 

L=A -+- +g(l + U Z + V Z ) .  (;: ;;y 
The Euler-Lagrange equations for the optimal form of the layers 

- 0, 

aL a aL 
aU axaux 

aL a aL 
a v  ayav, 

reduce to 

where g’ denotes the derivative of the function g towards its argument (1 + u2 + u2). A 
general solution of these equations, taking the boundary conditions (u= 0, v = u, on the 
left side of the tip and u = - u,, v = 0 on the right side of the tip, see figure 8), could not be 
found. 

If however, we use the same approximation as in 3 3, i.e. consider the cone angle 
energy to be constant in the chevron tip 

S’Sm (32) 
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1280 A. De Meyere et al. 

"I 

Figure 8. The boundary conditions at the border of the diamond-shaped surface in the more 
complicated structures as seen in figure 7. 

then equation (31) shows that in the tip 

au aU 
ax ay 
- + - = constant 

so that u goes linearly from 0 to - u, and u likewise from u, to 0. The optimal thickness 
of the tip can then easily be calculated. One has per unit length of the tip 

which is minimal for 

and has then the value 

Ymin = 2J(2Agm) ue. (36) 
In calculating this optimal form of the chevron tip, we have not taken account of the 
Oseen-Frank energy of the molecules and the electrostatic free energy. Even for the two 
states where the molecules are parallel to the glass surface, the molecules are not 
parallel to each other at both sides of the chevron tip, and thus afortiori not through the 
tip. Moreover, there is ajump in the normal component of the polarization through the 
tip, and thus polarization charge density on the tip. These effects have not been taken 
into account. We think that an extension of the exact computer analysis, as presented 
for the one dimensional case in 94, towards the two dimensional situation is practically 
not feasible. However, we think that it is reasonable to assume that the tip is infinitely 
small, and that the Frank-Oseen energy is proportional to sin' $ where t,h is the angle 
between the director at each side of the tip. With this assumption, an exact computer 
analysis of these two dimensional layer structures should be possible. 
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6. Conclusion 
In this article we analysed the important factors which govern the tip width of one 

dimensional chevrons and the analogous width of 'fracture lines' in two dimensional 
structures. We indicated that the competition between two energy contributions is 
crucial: first the deviation of the layers from the planar structure and secondly the 
deviation of the smectic cone angle from its equilibrium value. Since the layers are fixed 
at the boundaries, nature has to look for a compromise. The influence of an applied 
electric field can only be numerically studied. Our computer program shows that slight 
layer bending can occur only if one assumes high compressibility. 

Further investigation is needed. The full energy expression, equation ( 3 )  should be 
used. Finer estimations of the energy parameters of the electrical energy in two 
dimensional models would be a further improvement. 

Appendix 
In 9 3, the expression 

y =  L ( 6 , J ) d x  s 
has to be minimized. The Euler-Lagrange equation 

reduces to 

After multiplication with ddldx,  one obtains 

dg=d*(!E)2. d x  d x  

(37 )  

(38 )  

Taking the boundary conditions at the glass surface into account (6 = 6,, g(6,) = 0), one 
obtains 

A - =g(6). (:y 
The minimum value of y is then 

y=2 g(6)dx s 
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